As requested by our users, the following are the list of endpoints that is provided by PixLab for all your face detection, recognition, generation & landmarks extraction tasks. These includes:
- /facedetect: State-of-the-art face detection.
- /facelandmarks: Used for extracting facial features such as the eyes, bone, mouth coordinates and thus to Mimic the famous Snapchat filters.
- /facecompare which is used for face to face comparison. In other words, it is used for recognition.
- /facelookup: find a person’s face in a set or group of people.
Here is two working Python code to illustrate this:
1.Detect all human faces present in a given image or video frame via facedetect and extract each one of them via crop:
import requests
import json
# Target image: Feel free to change to whatever image holding as many human faces you want
img = 'http://cf.broadsheet.ie/wp-content/uploads/2015/03/jeremy-clarkson_3090507b.jpg'
req = requests.get('https://api.pixlab.io/facedetect',params={
'img': img,
'key':'My_Pix_Key',
})
reply = req.json()
if reply['status'] != 200:
print (reply['error'])
exit();
total = len(reply['faces']) # Total detected faces
print(str(total)+" faces were detected")
# Extract each face via crop now
for face in reply['faces']:
req = requests.get('https://api.pixlab.io/crop',params={
'img':img,
'key':'My_Pix_Key',
'width': face['width'],
'height': face['height'],
'x': face['left'],
'y': face['top']
})
reply = req.json()
if reply['status'] != 200:
print (reply['error'])
else:
print ("Face #"+str(face['face_id'])+" location: "+ reply['link'])
- Detect all human faces in a given image via facedetect and apply a blur filter to each one of them via mogrify:
import requests
import json
img = 'http://anewscafe.com/wp-content/uploads/2012/05/Brave-Faces-Group-shot.jpg'
# Detect all human faces in a given image via facedetect and blur all of them via mogrify.
req = requests.get('https://api.pixlab.io/facedetect',params={
'img': img,
'key':'Pix_Key',
})
reply = req.json()
if reply['status'] != 200:
print (reply['error'])
exit();
total = len(reply['faces']) # Total detected faces
print(str(total)+" faces were detected")
if total < 1:
# No faces were detected, exit immediately
exit()
# Pass the detected faces coordinates untouched to mogrify
coordinates = reply['faces']
# Call mogrify & blur the faces
req = requests.post('https://api.pixlab.io/mogrify',headers={'Content-Type':'application/json'},data=json.dumps({
'img': img,
'key':'PIXLAB_API_KEY',
'cord': coordinates #The field of interest
}))
reply = req.json()
if reply['status'] != 200:
print (reply['error'])
else:
print ("Blurred faces URL: "+ reply['link'])
Further code samples are available on the PixLab Github repository or refer to the PixLab Endpoints list for the official documentation.